# SERVICE PUBLICATIONS DEPARTMENT <br> Entertainment Products Division•Sylvania Electric Products Inc. 700 Ellicott Street•Batavia, N.Y. 

## CIRCUIT DESCRIPTION

NOTE: Only the right channel will be described for simplicity since the left channel is identical.

The pre-driver and driver stages are DC coupled. The predriver (Q1) is a small signal silicon transistor; the driver (Q2) a drift-field germanium power type.

Fixed bias for Q1 (pre-driver) is provided by voltage divider resistors R6, R8. R4 and C4 are in a "bootstrap" connection with Q1. Since the AC swing at the emitter of Q1 follows the input signal, R4 is literally "bootstrapped" along with this signal, causing the effective value of R4 to be multiplied by the approximate beta of Q1. Q1 is used as a common emitter amplifier, directly driving Q2. The driver stage (Q2) provides no voltage gain but a large power gain to the power output stage via interstage coupling trans former T1.

Approximately 20 db of negative feedback from the final output stage is applied through C6 and R10 to the emitter of the predriver stage Q1. The use of negative feedback results in improved damping and reduced distortion of the audio signal.

The pre-driver stage (Q1) collector voltage provides the bias voltage for the driver stage, $Q 2$. It can be seen that when the pre-driver collector voltage falls (high conduction) the base voltage of the driver also falls, thus driving this stage toward saturation. Therefore, under signal conditions, the driver may be driven from saturation to cut-off by the pre-driver stage.

Phase reversal necessary to drive the power output stage is ob$t$ ained from the secondary windings of the driver transformer T1.

The final power output stage consists of a matched pair of DTG110 germanium transistors ( $Q 3, Q 5$ ) and a matched pair of DTG110B germanium transistors (Q4,Q6) connected in a class B push-pull arrangement for high power gain and excellent linearity. A total of 200 W atts of EIA music power is taken from the collector-emitter busses of these matched transistor groups to drive the speaker systems directly. With a drive point potential on the collector-emitter buss nominally at 0 VDC, the signal swing is from near -45 VDC to near +45 VDC.

Emitter resistors R24 and R34 serve to compensate for differences between transistor parameters and the effects of ambient temperature variations. R16, R18, R20 and R22 form a biasing network for the power output transistors to keep their "no signal" condition slightly above cutoff to eliminate cross-over distortion.

Power transistors Q3 and Q5 are used in the common base mode and are directly driven by Q4 and Q6 collectors. Their purpose is to share the power supply voltage with the transformer driven transistors Q4 and Q6.

Capacitors C9 and C13 provide extra high frequency drive to Q3 and Q5 to maintain their power output at higher audio frequencies.

Note that all four DTG110 transistors are mounted on one extruded aluminum heat sink and that all four DTG110B transistors are mounted on the other.

Input AC power is applied to power transformer T3 and rectified in a solid state, full wave balanced bridge network. The secondary winding of the transformer has a grounded center tap in order to obtain both +45 volts and -45 volts from the rectified output. Note that the filter in the -45 volt 1 ine (C30) is mounted on a phenolic insulator to isolate the can from chassis ground.

When replacing power transistors, always observe the following precautions:

1. Use matched Beta, direct replacement types only.
2. Be sure to use silicon grease liberally on both sides of the mica insulators used under these transistors.
3. Be sure to snug down the power transistor to the heat sink evenly and firmly.
4. A momentary short across the output terminals of this ampli= fier will not damage the output stage. However, a prolonged shorted condition may cause serious damage to the amplifier.
\#14 or \#16 "Zip cord" is excellent for making up long extension speaker cables.

## Sensitivity:

Frequency Response: Cont. Sine Wave Pwr: 100 watts total at less than $0.7 \%$ T.H.D. EIA Music Power: 200 watts total.
IHF Music Power:
IM Distortion:
Pead Music Power ${ }^{1 / 2}$ Peak Music Power: Power Response: Hum and Noise: Load Impedance: Damping Factor:
1.5 volts for 60 watts, each channel.

8 Hertz to $55 \mathrm{kHz} \pm 3 \mathrm{db}$.

160 watts total into 8 ohm lcad at less
han $0.7 \%$ total harmonic distortion.
Less than $0.5 \%$ for 50 watts - each chan.
Less than $0.5 \%$ for
320 watts total.
15 Hz to 20 kHz (Half Power Points) 85 db below 80 watts. 8 ohms. 20

## TECHNICAL INFORMATION

BLOCK DIAGRAM


IMPORTANT: Always use genuine Sylvania replacement parts \& tubes.


BOTTOM PARTS


| SCHEMATIC CODING | SERVICE <br> PART NO. | DESCRIPTION |
| :---: | :---: | :---: |
| こAPACITORS |  |  |
| C2 | 41-98888-1 | 2/25 VNP Electrolytic |
| C4 | 41-10004-9 | 20/3V Electrolytic |
| C6 |  | 330 PF |
| C8 | 41-14594-6 | 250/30V Electrolytic |
| C9 |  | . 15 |
| C12 | 41-14594-6 | 250/30V Electrolytic |
| C13 |  | . 15 |
| C14 | 41-98888-1 | 2/25 VNP Electrolytic |
| C16 | 41-10004-9 | 20/3V Electrolytic |
| C18 |  | 330 PF |
| C20 | 41-14594-6 | 250/30V Electrolytic |
| C21 |  | . 15 |
| C24 | 41-14594-6 | 250/30V Electrolytic |
| C25 |  | . 15 |
| C26 |  | .22/200V |
| C28 | 41-14772-1 | 1500/30V Electrolytic |
| C30 | 41-14772-1 | 1500/30V Electrolytic |
| C32 | 41-18163-1 | $1000 \times 1000 / 35 \mathrm{~V}$ Dual Electrolytic |
| C34 |  | . $047 / 100 \mathrm{~V}$ |
| C36 |  | . $047 / 100 \mathrm{~V}$ |
| C38 |  | .22/100V |
| C40 | 41-22027-1 | $500 \times 500 \times 200 \mathrm{~V}$ Electrolytic |
| C42 | 43-98665-1 | . $005 / 150 \mathrm{VAC}$ |
| C44 | 43-98665-1 | . $005 / 150 \mathrm{VAC}$ |
| C46 | 41-23765-27 | 250/50V Electrolytic |
|  | 86-61830-1 | Insulator-C30 Mounting |

RESISTORS - All $1 / 2$ Watt, Carbon, $10 \%$ unless specified.

| R4 |  | 4.7 K |
| :---: | :---: | :---: |
| R6 |  | 68 K |
| R8 |  | 3.3 K |
| R10 |  | 470 |
| R14 |  | 6.8 K |
| R16 | 187-0092 | 220, 5W-5\% |
| R18 | 187-0068 | 120, 5 W |
| R20 | 36-62454-55 | 180, 5W |
| R22 |  | 2.7 ohm, 5\% |
| R23 |  | 6.8 ohm |
| R24 | 36-18482-9 | . 47 ohm, 5W - $5 \%$ |
| R26 | 187-0092 | 220, 5W |
| R28 | 187-0068 | 120, 5W |
| R20 | 36-62454-55 | 180, 5W |
| R32 |  | 2.7 ohm, 5\% |
| R33 |  | 6.8 ohm |
| R34 | 36-1848 2-9 | . 47 ohm, 5 W - $5 \%$ |
| R38 |  | 4.7 K |
| R40 |  | 68K |
| R42 |  | 3.3 K |
| R44 |  | 470 |
| R48 |  | 6.8 K |
| R50 | 187-0092 | 220, 5W-5\% |
| R. 52 | 187-0068 | 120, 5W |
| R54 | 36-62454-55 | 180, 5W |
| R56 |  | 2.7 ohm, 5\% |
| R57 |  | 6.8 ohm |
| R58 | 36-1848 2-9 | . 47 ohm, 5W-5\% |
| R60 | 187-0092 | 220, 5\% |
| R62 | 187-0068 | 120, 5W |
| R64 | 36-62454-55 | 180, 5W |
| R66 |  | 2.7 ohm, 5\% |
| R67 |  | 6.8 ohm |
| R68 | 36-1848-9 | . 47 ohm, 5W-5\% |
| R70 |  | $3.3 \mathrm{meg}, 20 \%$ |
| R72 | 36-6 2454-53 | 150, 5 W |
| R74 | 36-62454-53 | 150, 5W |
| R76 |  | 470 |
| R78 |  | 1 K |
| R80 |  | 4.7K |
| R84 | 36-62454-53 | 150, 5W |
| R86 |  | 27 K |
| R88 |  | 27 K |



MISCELLANEOUS PARTS

| PL4 | 73-10302-31 | Plug - Pilot Lamps (3 pin) |
| :---: | :---: | :---: |
| PL526 | 73-10302-46 | Connector - Power Cable (15 pin) |
|  | 73-2677 2-1 | Pins for PL5 56 |
| SK1 | 73-98079-2 | Socket - Phono (Right Chan. Input, |
| SK2 | 73-98079-2 | - Phono (Left Chan. Input) |
|  | 72-14734-2 | - Transistor (Q1 \& Q7) |
|  | 72-14607-1 | - Transistor (Q2,Q3,Q4,Q5, |
|  |  | Q11,Q12) |
|  | 86-61830-1 | Insulator - C30 Mounting |
|  | 86-14608-1 | Mica Insulator - Power Transistor |



